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1. Introduction and summary

Duality has played an important role in our understanding of Yang-Mill theories and it is

believed that it will play an important role also in gravity and in higher-spin gauge theories.

Indeed, although it is less clear what could be the implications of duality for theories whose

quantum versions are still unknown, gravity and higher-spin gauge theories1 are intimately

connected to a quantum string theory where certainly duality plays a crucial role.

The recent advent of holography raises some intriguing questions for duality. For

example one may wonder what is the holographic image of a duality invariant spectrum,

a duality transformation or a possible quantization condition that usually duality implies

for charges. Some of these issues were raised by Witten in [2] where it was argued that

the standard electric-magnetic duality of a U(1) gauge theory on AdS4 is responsible for

a “natural” SL(2, Z) action on current two-point functions in three-dimensional CFTs.2

Shortly afterwards it was shown in [3] that such an SL(2, Z) action is intimately related

to certain “double-trace” deformations in the boundary, assuming suitable large-N limits

and existence of non-trivial fixed points. The latter assumptions are strengthened by the

1For reviews of higher-spin theories see e.g. [1].
2See [4] and [5] for more recent works.
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fact that there exist models (e.g., see [6] and references therein) which exhibit the required

behavior. In particular, it was shown in [3] that certain ”double-trace” deformations induce

an SL(2, Z) action on two-point functions of higher-spin (i.e. spin s ≥ 2) currents. This

has led to the Duality Conjecture of [3]: linearized higher-spin theories on AdS4 spaces

possess a generalization of electric-magnetic duality whose holographic image is the natural

SL(2, Z) action on boundary two-point functions.

Surprisingly, even the duality for linearized spin-2 gauge fields (linearized gravity) was

not widely known by the time of this conjecture.3 Second order linearized gravitational

duality was discussed among other in [8 – 12]. More recently, the duality properties of

linearized gravity around flat space were studied in [13] and were further discussed in [14].

The duality of linearized gravity around dS4 was recently studied in [15]. These authors

work in the metric formalism and in the spirit of [16] they first solve the constraints and then

apply the duality transformation on the dynamical variables. This is different, although

we believe equivalent, to our approach.

In this note we present our calculations regarding the duality properties of gravity

in the presence of a cosmological constant. Having in mind applications to higher-spin

gauge theories we use forms and work in the first order formalism where duality is also

manifested at the level of the action [16]. Moreover, the first order formalism is relevant

for applications of duality to holography, since the correlation functions of the boundary

theory are essentially determined by the bulk canonical momenta (see e.g. [17]).

Our aim in this work is to formulate linearized first order gravity using suitable ”elec-

tric” and ”magnetic” variables, in close analogy with electromagnetism. We find that this

is possible only when the background geometry is Minkowski or (A)dS4. Then we imple-

ment the standard electric-magnetic duality rotations. We find that, up to ”boundary”

terms, the linearized Hamiltonian changes by terms that do not alter the bulk dynamics

i.e. do not alter the second order bulk equations of motion. Moreover, the duality ro-

tation interchanges the (linearized) constraints with the (linearized) Bianchi identitites.

The ”boundary” terms have important holographic consequences since they correspond to

marginal ”double-trace” deformations [3] that induce the boundary SL(2, Z) action. In the

appendix we exhibit a modified duality rotation that leaves the bulk Hamiltonian invariant

and induces ”boundary” terms that correspond to relevant deformations as in [3].

2. Action and hamiltonian

Having in mind the extension of our results to higher-spin gauge theorieswe start from the

MacDowell-Mansouri form [18] of the gravitational action4

IMM =
1

2Λ

∫

M

ǫabcd

(

Rab ∧ Rcd + 2Λea ∧ eb ∧ Rcd + Λ2ea ∧ eb ∧ ec ∧ ed
)

, (2.1)

3An interesting formulation of first order duality for linearized gravity around flat space was presented

in [7].
4We note I = −16πGNS, where S is the usually normalized gravitational action.
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where a, b, . . . are Lorentz indices. In this formalism, the vierbein ea and the spin connection

ωa
b are initially thought of as independent variables. The curvature 2-form is

Ra
b = dωa

b + ωa
c ∧ ωc

b =
1

2
Ra

bcde
c ∧ ed.

Varying the action with respect to ea and ωa
b, we find

Rab + Λea ∧ eb = 0 , (2.2)

T a = dea + ωa
b ∧ eb = 0 . (2.3)

The relation to gravity is established via the vanishing torsion equation (2.3), which relates

e and ω in the familiar way. The above equations are equivalent to the Einstein equation

in metric variables

Rµν −
1

2
Rgµν = +3Λgµν . (2.4)

and the scalar curvature is R = −d(d − 1)Λ = −12Λ. Note that our Λ is related to the

cosmological constant in its usual definition via Λcosm = −6Λ. Λ > 0 corresponds to AdS.

Note that this is actually SO(3, 2) covariant, as we can combine ω, e into a super-

connection. Note that Λ has units (Length)−2. In the SO(3, 2)-invariant formalism, IMM

arises from

IMM =
1

2Λ

∫

ǫABCDEV ERAB ∧RCD , (2.5)

where V E is a non-dynamical 0-form field (that we take to have value V −1 = 1 to gauge

back to the SO(3, 1) formalism) and RA
B is the curvature of ΩA

B ≡ {ea, ωa
b}. There are

also quasi-topological terms of the form

Itop =
θ

2Λ

∫

RA
B ∧RB

A +
α

Λ

∫

RA
B ∧RACV BV C (2.6)

that we could add to the action. In the stated gauge, this reduces to

Itop =
θ

2Λ
P2 + (θ + α)CNY + α

∫

Rab ∧ ea ∧ eb (2.7)

where P2 =
∫

Ra
b ∧ Rb

a is the Pontryagin class, CNY =
∫

(T a ∧ Ta − Rab ∧ ea ∧ eb) is the

Nieh-Yan class and we also note the Euler class E2 =
∫

ǫabcdR
ab ∧ Rcd. Note that in the

presence of torsion, the action (2.7) contains the non-topological term
∫

Rab ∧ ea ∧ eb with

“Immirzi parameter” γ = −2/α. In the absence of torsion, this term is a total derivative.

The Hilbert-Palatini action is

IHP = IMM −
1

2Λ
E2 . (2.8)

It differs from IMM by a boundary term, is smooth as Λ → 0 but is not manifestly SO(3, 2)-

invariant.
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2.1 The 3 + 1 split

Next, we carefully consider the 3+1 split. Although much of the discussion here is familiar

from the ADM formalism, we feel it is important to set notation carefully, as we will intro-

duce some new ingredients. To accommodate both AdS and dS signatures simultaneously,

we will introduce a ‘time’ function t and a foliation of space-time Σt →֒ M . In dS, t is

time-like, and this corresponds to the usual Hamiltonian foliation; in AdS on the other

hand, we will take t to be the (space-like) radial coordinate. We will keep track of the

resulting signs by a parameter σ⊥, equal to ±1 in dS(AdS).

Proceeding as usual then, we get a vector field t that satisfies ∇tt = 1 ≡ t(t) (so

t = ∂
∂t

) and a 1-form dt. Given a 4-metric, we can introduce the normal 1-form n as

n = σ⊥Ndt , (2.9)

which is normalized as (n, n) = σ⊥. The dual vector field n can be expanded as

n =
1

N
t −

1

N
N , (2.10)

where the shift N satisfies (N,n) = 0, and thus (t,n) = σ⊥N .

Next, we will locally choose a basis of 1-forms

e0 = σ⊥n = Ndt , (2.11)

eα = ẽα + Nαdt . (2.12)

The ẽα span T ∗Σt, and correspond to a 3-metric hij = ẽα
i ẽβ

j ηαβ . The quantities Nα are

the components of N: Nα = eα
i N i. These basis 1-forms are dual to {e0 = n, eα = ẽα},

with ea(e
b) = δb

a.

We expand the spin connection in the same basis5

ωa
b = qa

bdt + ω̃a
b , (2.13)

which leads to

Ra
b = R̃a

b + dt ∧ ra
b , (2.14)

where R̃ is formed from ω̃ and d̃ only, and

ra
b = ˙̃ωa

b − d̃qa
b − ω̃a

cq
c
b + qa

cω̃
c
b . (2.15)

Note that these quantities are merely decompositions along T ∗Σt in the 4-geometry; we

will introduce the intrinsically defined objects shortly.

We then find

IHP = 2ǫαβγ

∫

dt ∧
{

N(R̃αβ + Λẽα ∧ ẽβ) ∧ ẽγ − 2Nα(R̃0β) ∧ ẽγ + r0α ∧ ẽβ ∧ ẽγ
}

. (2.16)

As is familiar, the lapse and shift appear as Lagrange multipliers. The constraints that

they multiply are of course zero in any background (i.e. vacuum solution), such as (A)dS4.

5We have qa
b = Nω0

a
b + Nαωα

a
b and ω̃a

b ≡ ωα
a

bẽ
α.
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The final term in the action contains the real dynamics — r0α depends on the components

R0α
0β of the Riemann tensor.

Note though that the tensors used here are 4-dimensional. Let us define the ”electric

field”

Kα = σ⊥ω̃0
α = Kβαẽβ . (2.17)

In the case that ω is the torsion-free Levi-Civita connection, this agrees with the standard

definition for extrinsic curvature, regarded as a vector-valued one-form. We then find

R̃α
β =(3)Rα

β − σ⊥Kα ∧ Kβ , (2.18)

and

R̃0
α = σ⊥(d̃Kα + Kβ ∧ ω̃β

α) ≡ σ⊥(D̃K)α . (2.19)

These equations amount to the Gauss-Codazzi relations.

Furthermore, r0α contains time derivatives of ω̃0α as well as terms linear in components

of q. We find

2ǫαβγr0α ∧ ẽβ ∧ ẽγ = 2ǫαβγ

[

σ⊥K̇α − (D̃q)0α
]

∧ ẽβ ∧ ẽγ , (2.20)

= 2σ⊥ǫαβγ

(

K̇α + qαδKδ

)

∧ ẽβ ∧ ẽγ + 4q0α
[

ǫαβγ T̃ β ∧ ẽγ
]

up to a total 3-derivative. We have defined the intrinsic 3-torsion T̃α = d̃ẽα + ω̃α
β ∧ ẽβ .

Since we wish to regard the ẽ as coordinate variables,6 we integrate the first term by parts

to obtain (up to the total time-derivative ∂
∂t

(

2σ⊥Kα ∧ ẽβ ∧ ẽγǫαβγ

)

)

2ǫαβγr0α ∧ ẽβ ∧ ẽγ = Πα ∧ ˙̃eα + 4q0αǫαβγ T̃ β ∧ ẽγ + 2σ⊥qαδǫαβγKδ ∧ ẽβ ∧ ẽγ . (2.21)

where we have defined the momentum 2-form

Πα = −4σ⊥ǫαβγKβ ∧ ẽγ . (2.22)

The qab appear as Lagrange multipliers. In particular, the qαβ constraint precisely sets the

antisymmetric (torsional) part of the extrinsic curvature tensor K[αβ] to zero. Next, we

define the ”magnetic field”

Bα =
1

2
σ⊥ǫαβγω̃βγ , ωαβ = −ǫαβγBγ . (2.23)

and we find that the q0α constraint

ǫαβγ T̃ β ∧ ẽγ = ǫαβγ d̃ẽβ ∧ ẽγ − σ⊥Bβ ∧ ẽβ ∧ ẽα = 0 , (2.24)

involves only the antisymmetric part B[α,β] of the magnetic field Bα = Bαβ ẽβ. The anti-

symmetric part of Bα spoils the gauge covariance of the constraint (2.24) under an SO(3)

6Without this integration by parts, we would be in the Ashtekar formalism. Here, our choice gives a

formalism closely related to the metric variable formalism. Note that the induced boundary term may be

written −
1

2
Πα ∧ ẽα.
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rotation of the dreibein ẽα, hence it represents degrees of freedom that can be gauged fixed

to zero by an SO(3) rotation. On the other hand, an algebraic equation of motion connects

the symmetric part of Bαβ to derivatives of ẽα as

d̃ẽα + ǫαβγBβ ∧ ẽγ = 0 (2.25)

At the end, one is left with the canonically conjugate variables ẽα and Πα. These results

are familiar from the metric formalism.

Dropping the torsional terms, we then arrive at the action

IHP =

∫

dt ∧
{

˙̃eα ∧ Πα + 2Nǫαβγ((3)Rαβ − σ⊥Kα ∧ Kβ + Λẽα ∧ ẽβ) ∧ ẽγ (2.26)

−4σ⊥Nαǫαβγ(D̃K)β ∧ ẽγ
}

.

Furthermore, using ∗3ẽ
α ∧ ẽβ = 1

2ηγδǫ
αβγ ẽδ , we have

Π̂α = ∗3Πα = −2(Kαβ − ηαβtrK)ẽβ , (2.27)

where trK = ηαβKαβ. We can solve the above equation to get

Kα = −
1

2

(

Π̂αβ −
1

2
ηαβtrΠ̂

)

ẽβ . (2.28)

As stated above, Kαβ (and Π̂αβ) is symmetric when the torsion vanishes.

Finally, with the definition (2.23) we find7

ǫαβγ
(3)Rαβ ∧ ẽγ = ǫαβγ

[

d̃ω̃αβ + ω̃α
δ ∧ ω̃δβ

]

∧ ẽγ

= σ⊥

[

2d̃Bγ + ǫαβγBα ∧ Bβ
]

∧ ẽγ . (2.29)

Introducing Bα is an unusual thing to do but it will play a role in duality: in this form,

the Hamiltonian contains terms which are reminiscent of those of the Maxwell theory. The

full HP action is of the form

IHP =

∫

dt ∧
{

˙̃eα ∧ Πα − 4σ⊥Nαǫαβγ(D̃K)β ∧ ẽγ (2.30)

+2σ⊥N(2d̃Bγ + ǫαβγBα ∧ Bβ − ǫαβγKα ∧ Kβ + σ⊥Λǫαβγ ẽα ∧ ẽβ) ∧ ẽγ
}

.

Note that the entire contribution of the cosmological constant appears in the last term of

the Hamiltonian constraint.

2.2 Shifted variables

It is possible to make a transformation of the canonical variables in order to absorb the

cosmological constant term in (2.30). This can be achieved by introducing the new variables

K̂α = Kα − ρẽα , (2.31)

7The spatial signature σ3 appears in ǫαβγǫφδρηαφ = σ3(ηβδηγρ − ηβρηγδ). We will always consider

Lorentzian spacetime signature, so σ3 = −σ⊥.
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and requiring that

ρ2 = σ⊥Λ . (2.32)

This is positive only when σ⊥ and Λ are simultaneously positive or negative, as it is the

case for both AdS4 (Λ > 0) and dS4 (Λ < 0). We will often write Λ = σ⊥/L2 where L is a

length scale.

Under (2.31) the momentum 2-form becomes

Πα → Pα − 4σ⊥ρǫαβγ ẽβ ∧ ẽγ . (2.33)

The last term in (2.33) contributes a total time derivative to the action (of the form of a

boundary cosmological term). We have introduced a new momentum variable

Pα = −4σ⊥ǫαβγK̂β ∧ ẽγ .

Then, we get the action

IHP =

∫

dt ∧
{

˙̃eα ∧ Pα − 4σ⊥Nαǫαβγ(D̃K̂ + ρT̃ )β ∧ ẽγ −
4

3
σ⊥ρǫαβγ

∂

∂t
(ẽα ∧ ẽβ ∧ ẽγ)

+2σ⊥N
(

2d̃(Bα∧ẽα)+2Bγ∧T̃ γ−ǫαβγ

(

Bα∧Bβ + K̂α∧K̂β+2ρK̂α∧ẽβ
)

∧ ẽγ
)}

.

(2.34)

Note that the shift constraint is still written in terms of the ordinary covariant derivative,

and thus involves a non-linear term coupling B to K̂. Consistent with our previous dis-

cussion, we drop the terms involving the torsion T̃ , and disregard the boundary term to

obtain

IHP =

∫

dt ∧
{

˙̃eα ∧ Pα − 4σ⊥Nαǫαβγ(D̃K̂)β ∧ ẽγ (2.35)

+2σ⊥N
(

2d̃(Bα ∧ ẽα) − ǫαβγ

(

Bα ∧ Bβ + K̂α ∧ K̂β + 2ρK̂α ∧ ẽβ
)

∧ ẽγ
) }

.

We note that the parameter ρ can be of either sign (although, this sign does not appear

in the second order equations of motion).

2.3 Linearization

Next, we linearize the above action around an appropriate fixed background. We expand

as

ẽα = ẽα + Eα, N = 1 + n, Nα = nα, Bα = Bα + bα, K̂α = K̂
α

+ kα . (2.36)

The background values should satisfy the constraints. The simplest choice is the back-

ground where

K̂
α

= 0 = Bα . (2.37)

In fact, reaching this simple form was a motivation for the shift (2.31). Then, to quadratic

order in the fluctuating fields the Hamiltonian gives

IHP =

∫

dt ∧
{

Ėα ∧ pα − 4σ⊥nαǫαβγ d̃kβ ∧ ẽγ + 4σ⊥n
(

d̃(bα ∧ ẽα) − ρǫαβγkα ∧ ẽβ ∧ ẽγ
)

−2σ⊥ǫαβγ

(

bα ∧ bβ + kα ∧ kβ + 2ρkα ∧ Eβ
)

∧ ẽγ
}

, (2.38)

– 7 –
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where

pα = −4σ⊥ǫαβγkβ ∧ ẽγ (2.39)

are the linearized momentum variables conjugate to Eα.

In order to reach the form (2.38) the linear terms in the fluctuations must vanish. For

this to happen we find the relationships

˙̃eα + ρẽα = 0 . (2.40)

Notice that we can also write the linearized action in the form

IHP =

∫

dt ∧
{

(Ėα + ρEα) ∧ pα − 2σ⊥ǫαβγ

(

bα ∧ bβ + kα ∧ kβ
)

∧ ẽγ

−4σ⊥nαǫαβγ d̃kβ ∧ ẽγ + n
(

4σ⊥d̃bγ + ρpγ

)

∧ ẽγ
}

. (2.41)

The form of the first term, involving the momentum, makes clear that longitudinal fluc-

tuations are non-dynamical. The natural time dependence of Eα is of the form e−ρt (cor-

respondingly, the natural time dependence of pα is e+ρt). Other than that, we see that in

comparing to the flat space action, in these variables, the only change is that the Hamil-

tonian constraint is modified.

The solutions of (2.40) and (2.37) are components of (A)dS4 spacetimes. We can

solve (2.40) to obtain

e0 = dt, eα = e−ρtdxα . (2.42)

With these we construct the usual Poincaré metric on (A)dS which, however, covers only

half of the space even though the parameter t runs from −∞ to +∞. The conformal

boundary in these coordinates is at t = +∞. Then we derive

ωα
0 = −ρe−ρtdxα = −ρeα , (2.43)

and so

Rα
β = −σ⊥

L2 eα ∧ eβ

Rα
0 = − 1

L2 eα ∧ e0

}

Ra
b = −

σ⊥

L2
ea ∧ eb . (2.44)

Hence Ricab = −3σ⊥

L2 ηab and R = −12σ⊥/L2 = −12Λ. We also evaluate

Πα = −4σ⊥ρǫαβγ ẽβ ∧ ẽγ , Π̂
α

= 4ρẽα, trΠ̂ = 12ρ (2.45)

Bα = 0, Kα = ρẽα ⇒ K̂
α

= 0 (2.46)

Note that in this gauge, (D̃K)α = 1
L
T̃

α
= 0, which solves the shift constraint, while the

Hamiltonian constraint is satisfied through a cancellation between the K2 term and the

cosmological term.

– 8 –
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3. Linearized gravitational duality and holography

Let us summarize what we have obtained so far. In the presence of a cosmological constant

we have defined variables such that the action resembles most closely the action without

the cosmological constant. This was done in order to look for a suitable background around

which linear fluctuations are as simple as possible. Requiring that K̂ (the “electric field”)

and B (the “magnetic field”) vanish in such a background - as they do around flat space -

we found that the background should be (A)dS4. Quite satisfactorily, both sign choices for

ρ in the change of variables (2.31) lead to (A)dS4 spacetimes.

3.1 Duality and holography

This is the appropriate point to recall some salient features of duality rotations. In simple

Hamiltonian systems the effect of the canonical transformation p 7→ q and q 7→ −p to the

action is (see e.g. [19])

I =

∫ t2

t1

dt[pq̇ − H(p, q)] 7→ ID =

∫ t2

t1

dt[−qṗ − H(q,−p)] . (3.1)

Notice that ID involves the dual variables, for which we have however kept the same

notation for simplicity. The transformed Hamiltonian H(q,−p) is in general not related

to H(p, q). However, if H(q,−p) = H(p, q) we call the above transformation a duality. It

then holds

ID = I − qp
∣

∣

∣

t2

t1
. (3.2)

The dual action describes exactly the same dynamics as the initial one, up to a modifica-

tion of the boundary conditions. For example, if I is stationary on the e.o.m for fixed q

in the boundary, ID is stationary on the same e.o.m. for fixed p in the boundary. This

simple example illustrates the role of duality in holography; a bulk duality transformation

corresponds to a particular modification of the boundary conditions. This property of du-

ality transformations is behind the remarkable holographic properties of electormagnetism

in (A)dS4 [2, 3].

Clearly, the crucial properties of a duality transformation are to be canonical and to

leave the Hamiltonian unchanged. However, consider a slight generalization

S =

∫ t2

t1

dt

[

pq̇ −
1

2
(p2 + q2 + 2λpq)

]

(3.3)

where λ is an arbitrary parameter. The Hamiltonian now is not invariant under the

canonical transformation p 7→ q and q 7→ −p — the pq term changes sign. Consequently,

the first order form of the equations of motion are also not duality invariant. Nevertheless,

the second order equation of motion is invariant. We will find that gravity in the presence

of a cosmological constant follows precisely this model. Of course, gravity is a much more

complicated constrained system, but as we will show, the constraints and Bianchi identities

transform appropriately.

– 9 –
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We also note that the canonical transformation (implemented by a generating func-

tional of the first kind)

p 7→ q + 2λp , q 7→ −p . (3.4)

is of interest here. The above does not change the Hamiltonian and the transformed action

differs from the initial one by total time derivative terms8

S 7→ SD = S − pq
∣

∣

∣

t2

t1
−λp2

∣

∣

∣

t2

t1
. (3.5)

3.2 Linearized gravitational duality

As a preamble to gravity we recall the duality properties of Maxwell theory

IMax =
1

2g2

∫

dt ∧

{

˙̃A ∧ ∗3E −
1

2
(E ∧ ∗3E + B ∧ ∗3B) − A0d̃ ∗3 E

}

, (3.6)

Under the duality E 7→ − ∗3 B, B 7→ ∗3E, Ã 7→ ÃD, we find

IMax 7→ IMax,D =
1

2g2

∫

dt ∧

{

− ˙̃AD ∧ B −
1

2
(E ∧ ∗3E + B ∧ ∗3B) + A0d̃B

}

. (3.7)

E and B in (3.7) should be expressed through ÃD. We observe that the kinetic term has

changed sign, while the Hamiltonian remains invariant. In addition, the (Gauss) constraint

is dualized to the trivial ‘Bianchi’ identity dB = 0 for the dual magnetic field.

Next we try to apply a Maxwell-type duality map in gravity. We consider the following

transformation around the fixed background (2.40)

kα 7→ −bα, bα 7→ kα . (3.8)

To implement the map (3.8) we need to specify the mapping of Eα to a ‘dual 3-bein’ Eα.

We do that using the linearized form of (2.25) as

ǫαβγbβ ∧ ẽγ + d̃Eα = 0 7→ ǫαβγkβ ∧ ẽγ + d̃Eα = 0 = d̃Eα −
1

4σ⊥

pα (3.9)

Since pα = 4σ⊥d̃Eα, it is natural to define

pD,α = 4σ⊥d̃Eα = −4σ⊥ǫαβγbβ ∧ ẽγ , (3.10)

and thus the mapping (3.8) is supplemented by

E 7→ E , E 7→ −E , p 7→ −pD , pD 7→ p (3.11)

Now, let us see the effects of the above duality mapping. The action transforms to

IHP 7→ IHP,D =

∫

dt ∧
{

−Ėα ∧ pD,α − ρEα ∧ pD,α − 2σ⊥ǫαβγ

(

bα ∧ bβ + kα ∧ kβ
)

∧ ẽγ

+4σ⊥nαǫαβγ d̃bβ ∧ ẽγ + n
(

4σ⊥d̃kγ + ρpD,α

)

∧ ẽγ
}

(3.12)

8In holography, the latter terms correspond to the relevant ”multi-trace” boundary deformations dis-

cussed in [3].

– 10 –



J
H
E
P
1
1
(
2
0
0
7
)
0
7
9

where now kα and bα should be expressed in terms of the dual variables Eα and pD,α

via (3.9) and (3.10). We notice that the ’kinetic’ part Ė ∧p of the action changes sign under

the duality map, in direct analogy with the Maxwell case. However, the Hamiltonian is

not invariant due to the change of sign of the second term in the first line of (3.12). We

will discuss this further in a later section. For now, we note that this sign change would

not show up in the equations of motion, written in second order form. It is important to

also note that the constraints are transformed into quantities which in the next subsection

we will recognize as the linearized Bianchi identities. This is to be expected since the

duality transformations are canonical. We also note that it may be possible to choose an

alternative canonical transformation, designed to leave the Hamiltonian invariant. The

latter is presumably related to the work of Julia et. al. [15] and is considered in the

appendix.

3.3 Linearized constraints and Bianchi Identities

By virtue of the discussion above we may now demonstrate that under the duality map-

ping (3.8) the linearized constraints transform to the linearized Bianchi identities as

Cα ≡ ǫαβγ d̃kβ ∧ ẽγ 7→ −ǫαβγ d̃bβ ∧ ẽγ (3.13)

C0 ≡ −σ⊥

(

d̃bγ − ρǫαβγkα ∧ ẽβ
)

∧ ẽγ 7→ −σ⊥

(

d̃kγ + ρǫαβγbα ∧ ẽβ
)

∧ ẽγ (3.14)

To identify the right hand sides, we first note that the Bianchi identities are

BR
a
b = dRa

b − Ra
c ∧ ωc

b + ωa
c ∧ Rc

b = 0 (3.15)

Ba
T = dT a − Ra

b ∧ eb + ωa
b ∧ T b = 0 (3.16)

which are obtained from the definitions of Ra
b and T a by exterior differentiation. The first

equation is satisfied identically. Since the torsion vanishes, the second equation tells us

only that Ra
b ∧ eb = 0. If we do the 3+1 split, we find two equations. The first is

BT
α = −((3)Rα

β − σ⊥Kα ∧ Kβ) ∧ ẽβ = 0 (3.17)

which upon using the symmetry of Kα linearizes to

BT
α = −ǫαβγ d̃bβ ∧ ẽγ + . . . (3.18)

Note that this is the image under duality of the shift constraint as in (3.13).

The second identity is

BT
0 = −R̃0

α ∧ ẽα = −σ⊥(D̃K)α

= −σ⊥

(

d̃kα + ρǫαβγbβ ∧ ẽγ
)

∧ ẽα = 0 (3.19)

where to arrive in the second line we used (2.46). This is the image of the Hamiltonian

constraint as in (3.14).

Summarizing, the duality transformations between linearized constraints and Bianchi

identities are

Cα 7→ BT,α C0 7→ B0
T (3.20)

BT,α 7→ −Cα B0
T 7→ −C0 (3.21)
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3.4 Connection with other known dualities

The Maxwell-type duality operation (3.8) is closely related to the dualization of the first

two indices of the Riemann tensor as9

Ra
b → Sa

b ≡
1

2
ǫa

bc
dRc

d (3.22)

at least at the linearized level. Let us investigate (3.22) by rewriting expressions in the

3+1 split. We have

Ra
b = R̃a

b + dt ∧ ra
b

Sa
b = S̃a

b + dt ∧ sa
b

We begin with the spatial 2-forms when we have

R̃αβ = −ǫαβγ d̃Bγ + σ⊥(Bα ∧ Bβ − Kα ∧ Kβ) (3.23)

R̃0
α = σ⊥(d̃Kα + Kβ ∧ ω̃β

α) ≡ σ⊥(D̃K)α (3.24)

and

S̃0
γ =

1

2
σ⊥ǫαβγR̃αβ (3.25)

S̃αβ = ǫαβγR̃0γ (3.26)

If we linearize these expressions, we find under the duality transformation (3.8)

R̃ab 7→ −σ⊥S̃ab (3.27)

Because the expressions (3.24) involve derivatives of B and K, the duality (3.8) is an

‘integrated form’ of the usual Riemann tensor duality, but implies it.

Similarly, if we investigate the spatial 1-forms, we find

rab 7→ −σ⊥sab (3.28)

To arrive at this result we have set to zero the Lagrange multiplier field q.

4. The effect on the boundary theory

It is well known that AdS is holographic. We may well ask, in the context of AdS/CFT,

how the duality transformation that we have defined here acts in the boundary. We are

instructed to consider the on-shell bulk action as a function of bulk fields. So, we evaluate

the action on a solution to the equation of motion, resulting in a pure boundary term which

is of the form

Sbdy =

∫

∂M

pα ∧ Eα (4.1)

9For a discussion of the duality properties of gravity in terms of the Riemann tensor see [10].
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Applying the duality transformation to the bulk theory, although the bulk action is not

invariant as we have discussed above, nevertheless it may be easily shown that it induces

a simple transformation on the (linearized) boundary term: it simply changes its sign.

Sdual
bdy = −

∫

∂M

pD,α ∧ Eα (4.2)

This transformation is exactly analogous to what happens in the Maxwell case: it amounts

to the result [21].10

G2G
dual
2 = −1 . (4.3)

5. Conclusions and outlook

Motivated by possible application in holography and in higher-spin gauge theory we have

studied the duality properties of gravity in the Hamiltonian formulation. We have presented

the gravity action in terms of suitable variables that closely resemble the electric and

magnetic fields in Maxwell theory. We have found suitable “electric” and “magnetic”

field variables, such that at the linearized level first order gravity most closely resembles

electromagnetism. This can be done only around Minkowksi and (A)dS4 backgrounds.

We have implemented duality transformations in the linearized gravity fluctuations

around these backgrounds. In the presence of a cosmological constant, the Hamiltonian

changes, nevertheless the bulk dynamics remains unaltered, while the linearized lapse and

shift constraints are mapped into the linearized Bianchi identities. Moreover, the dual-

ity transformations induce boundary terms whose relevance in holography we have briefly

discussed. Finally, we have exhibited a modified duality rotation that leaves the bulk

Hamiltonian invariant, while it induces boundary terms corresponding to relevant defor-

mations.

The main implication of our results is that certain properties of correlations functions

in three-dimensional CFTs mimic the duality of gravity. It would be interesting to extend

our results to black-hole backgrounds and also when topological terms are present in the

bulk. We also expect that one can analyze the duality of higher-spin gauge theories based

on our first-order approach.

Acknowledgments

The work of A. C. P. was partially supported by the research program “PYTHAGORAS

II” of the Greek Ministry of Education. RGL was supported in part by the U.S. Department

of Energy under contract DE-FG02-91ER40709.

A. Other duality mappings

It is possible to find a transformation that leaves the Hamiltonian unchanged. Consider

the following transformation in the fixed background (2.40)

kα 7→ −bα − 2ρEα, bα 7→ kα . (A.1)

10See also [22] for an interesting recent application of this formula.
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The mapping to the dual dreibein is still specified by (3.9). A straightforward calculation

reveals that the action transforms as

IHP 7→ IHP,D = IHP + 4σ⊥

∫

∂M

(

ǫαβγE
α ∧ bβ + ρǫαβγE

α ∧ Eβ
)

∧ ẽγ

+

∫

dt ∧
[

4σ⊥nαǫαβγ d̃bβ ∧ ẽγ − 8ρnαkβ ∧ ẽα ∧ ẽβ

+n(4σ⊥d̃kα + 4σ⊥ρǫαβγbβ ∧ ẽγ + 8ΛǫαβγE
β ∧ ẽγ) ∧ ẽα

]

(A.2)

The transformations (A.1) leaves unchanged the Hamiltonian and changes the action by

the total ”time” derivative terms shown in the first line of (A.2).

Moreover, the linearized constraints transform into the linearized Bianchi identities.

Let us see that in some detail. The second term in the shift constraint is zero since kα is

a symmetric one form kα = kαβ ẽβ with kαβ = kβα; see (2.21).

The term proportional to Λ in the lapse constraint is also zero. This is slightly more

involved to see and it is based on the possibility of solving (3.9) for Eα after gauge fixing.11

One way to see this is in components. Write Eα = Eα
β ẽβ and (3.9) becomes

∂αE
β
γ − ∂γE

β
α = ǫβ

δαkδ
γ − ǫβ

δγkδ
α (A.3)

In the ”Lorentz gauge” where ∂αEβ
α = 0 = ∂αkβ

α the above can be inverted as

Eα
β =

1

∂2
ǫα

δγ∂γkδ
β (A.4)

Using (A.4) one verifies that the last term in the lapse constraint vanishes. This modified

duality transformation is probably related to the one considered by Julia et. al. in [15].
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